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NUMERICAL STUDY OF FREE OSCILLATIONS

OF A BEAM WITH OSCILLATORS

UDC 519.632.4S. D. Algazin

Free oscillations of a free-ended beam of variable cross section and mass with spring-suspended point
masses (oscillators) are considered. It is found that parametric resonances are possible in this oscil-
lating system. The effectiveness of the proposed calculation procedure is confirmed numerical calcu-
lations.
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Introduction. Eigenvalue problems in which the solutions of the corresponding equations are smooth
functions are considered in [1]. However, some problems of mathematical physics lead to eigenvalue problems with
piecewise smooth functions. In the present paper, the results of [1] are extended to problems with piecewise smooth
functions. An estimate of the error of the proposed method is given in [2]. The corresponding programs in Fortran
are given in [3].

1. Formulation of the Problem. We consider a beam (0 � x � L) of cross section F (x) (which is,
generally speaking, variable) with masses mk (oscillators) suspended by springs with rigidity ck. It is required to
determine the free oscillations of this system.

We consider the steady-state oscillations of one load (oscillator). The equation of motion of the load (oscil-
lator) is written as

m
d2z(t)
dt2

= −c(z(t) − u(x∗, t)),

where m is the mass of the load, c is the spring rigidity, z(t) is the amplitude of the oscillator, and u(x∗, t) is the
displacement of the point of suspension x = x∗ of the oscillator. We set

z(t) = eiωt z, u(x, t) = eiωt u(x).

Then,
(u(x∗) − z)c + mλz = 0, λ = ω2.

The motion of the beam is described by the equation

m
∂2u

∂x2
=

∂σ

∂x
+

∑
F,

where σ is the stress in the beam. From this, we obtain

d

dx
EF (x)

d

dx
u(x) + λm(x)u(x) −

n∑

k=1

ck(uk − zk)δ(x − xk) = 0; (1.1)

ck(uk − zk) + λmkzk = 0, λk = ck/mk; (1.2)

EF (x)
du

dx

∣∣∣
x=0,L

= 0. (1.3)
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Boundary conditions (1.3) imply that the ends of the beam are free. Let us introduce into consideration the
Green function U = U(x, y) as a solution of the following problem:

d

dx
EF (x)

d

dx
U(x, y) + δ(x − y) − m(x)

M
= 0, 0 < y < L; (1.4)

EF (x)
dU(x, y)

dx

∣∣∣
x=0,L

= 0; (1.5)

L∫

0

m(x)U(x, y) dx = 0. (1.6)

We note that Eq. (1.1) can be considered as a static one, i.e., as the problem of the extension of a beam of
variable cross section under the action of the bulk force [−λm(x)u(x)] and point forces. By virtue of this, we have
two elastic systems (1.1)–(1.3) and (1.4)–(1.6) according to the Betti reciprocal theorem: the work of the forces of
the first system in displacements of the second system is equal to the work of the forces of the second system in
displacements of the first system. As a result, we have

u(x) +
1
M

n∑

k=1

mkzk = λ

L∫

0

U(x, ξ)m(ξ)u(ξ) dξ + λ

n∑

k=1

mkzkU(x, xk); (1.7)

λk(uk − zk) + λzk = 0, λk = ck/mk (1.8)

[uk = u(xk), where k = 1, 2, . . . , n is the value of the displacement at the attachment point of the kth oscillator].
Thus, we have the system of homogeneous integroalgebraic equations (1.7) and (1.8) for the free-oscillation

amplitudes u(x), z1, z2, . . . , zn, and frequency λ. For the case of forced oscillations, we have an inhomogeneous
integral equation.

2. Quadrature Formula. The integral equation (1.7) is discretized using the quadrature formula

ck =

xk+1∫

xk−1

m(x)Sk(x) dx, (2.1)

where

Sk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x − xk−1

xk − xk−1
, x ∈ [xk−1, xk],

x − xk+1

xk − xk−1
, x ∈ [xk, xk+1],

k = 2, . . . , N − 1;

S1(x) =

⎧
⎨

⎩

1, x ∈ [x0, x1],
x − x2

x1 − x2
, x ∈ [x1, x2];

SN (x) =

⎧
⎨

⎩

x − xN−1

xN − xN−1
, x ∈ [xN−1,xN ],

1, x ∈ [xN , L];

m(x) is a piecewise linear function whose discontinuity (break) points coincide with the mesh nodes. Thus, the
function m(x) is linear on each segment. On the ith segment, let m(x) = aix + bi, where ai and bi are certain
constants.

To simplify the programming procedure, we use the Simpson formula
x2∫

x0

f(x) dx =
h

3
[f0 + 4f1 + f2].

We denote x∗
k = (xk + xk−1)/2 and x∗

k+1 = (xk+1 + xk)/2. Then, for k = 1, 2, . . . , N , we have
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ck =

xk∫

xk−1

m(x)Sk(x) dx +

xk+1∫

xk

m(x)Sk(x) dx

=
xk − xk−1

6
[m(xk−1)Sk(xk−1) + 4m(x∗

k)Sk(x∗
k) + m(xk)Sk(xk)]

+
xk+1 − xk

6
[m(xk)Sk(xk) + 4m(x∗

k+1)Sk(x∗
k+1) + m(xk+1)Sk(xk+1)].

Here

Sk(xk−1) =
{

0, k �= N,

1, k = N ;
Sk(xk+1) =

{
0, k �= N,

1, k = N ;
Sk(xk) = 1.

3. Discretization. Calculating the integral term in (1.7) by the quadrature formula (2.1), we obtain a
finite-dimensional problem of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 0 m1/M . . . mn/M
...

. . .
...

...
...

...
0 . . . 1 m1/M . . . mn/M

λ1 . . . 0

J
...

. . .
...

0 . . . λn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

...
uN

z1

...
zn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

(
A UM̂

0 In

)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

...
uN

z1

...
zn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

or in the matrix form

E

(
u

z

)
= λD

(
u

z

)
. (3.1)

Here

Ak(x) =

xk+1∫

xk−1

U(x, ξ)m(ξ)Sk(ξ) dξ, k = 1, 2, . . . , N ;

Aik = Ak(xi), k, i = 1, 2, . . . , N ;
L∫

0

U(x, ξ)m(ξ)u(ξ) dξ =
N∑

k=1

ckAk(x)uk

[by setting u(ξ) =
N∑

k=1

ukSk(ξ) and uk = u(xk)], J is n × N matrix in which j(k) in the kth line (k = 1, 2, . . . , n)

is replaced by −λk and the remaining terms in this line are zero [j(k) is an integer function that associates
the oscillator number k to the mesh node number], U is a matrix of size N × n, Uik = U(xi, xj(k)), and M̂

= diag (m1, m2, . . . , mn) is a diagonal matrix of size n × n.
In relation (3.1), the matrix E can be inverted analytically, resulting in a finite-dimensional problem of the

form

v = λE−1Dv, v = (u, z),

where

E−1 =
(

IN + m(Λ − Jm)−1J −m(Λ − Jm)−1

−(Λ − Jm)−1J (Λ − Jm)−1

)
;

m =
1
M

⎛

⎜⎝
m1 . . . mn

...
. . .

...
m1 . . . mn

⎞

⎟⎠ ; Λ = diag (λ1, . . . , λn)

(m is a matrix of size N × n);
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E−1D =
(

(IN + mΛ̂J)A (IN + mΛ̂J)UM̂ − mΛ̂
−Λ̂JA −Λ̂JUM̂ + Λ̂

)
. (3.2)

We note that Jm = −Λm̂ and, hence, Λ̂ = (In + m̂)−1Λ−1, where

m̂ =
1
M

⎛

⎜⎝
m1 . . . mn

...
. . .

...
m1 . . . mn

⎞

⎟⎠

is a matrix of size n × n. The matrix In + m̂ is easily inverted analytically. We denote

pi =
(
1 +

1
M

∑

i�=j

mj

)/(
1 +

1
M

∑

j

mj

)
, i = 1, 2, . . . , n,

(In + m̂)−1 =

⎛

⎜⎜⎜⎝

p1 p2 − 1 . . . pn − 1
p1 − 1 p2 . . . pn − 1

...
...

. . .
...

p1 − 1 p2 − 1 . . . pn

⎞

⎟⎟⎟⎠ = P.

Then,

Λ̂ =

⎛

⎜⎜⎜⎝

p1 p2 − 1 . . . pn − 1
p1 − 1 p2 . . . pn − 1

...
...

. . .
...

p1 − 1 p2 − 1 . . . pn

⎞

⎟⎟⎟⎠

⎛

⎜⎝
λ−1

1 . . . 0
...

. . .
...

0 . . . λ−1
n

⎞

⎟⎠ .

For convenience of programming, we write Eq. (3.2) as

E−1D =
(

A + mΛ̂JA UM̂ + mΛ̂(JUM̂ − I)
−Λ̂JA Λ̂ − Λ̂JUM̂

)
.

4. Examples of Numerical Calculations. Numerical calculation were performed for a homogeneous
beam EF (x) = 1 and m(x) = 1 of unit length. A uniform mesh of 68 internal nodes was used. Oscillators with
masses of 0.1 and frequencies of 5 and 6 were attached at the 18th and 36th nodes to the beam. The first five
eigenfrequencies were obtained: 4.7240, 6.4569, 10.7744, 40.8333, and 89.3858. Figures 1–5 show the eigenmodes
corresponding to these frequencies.

The problem described above was solved for both constant distributions EF (x) = const and m(x) = const
and for piecewise linear distributions, and the functions EF (x) and m(x) had several discontinuities. To control
the procedure for EF (x) = 1 and m(x) = 1, we reduced the problem to the general eigenvalue problem for a
meromorphic λ-matrix A(λ). A comparison of the calculations using these procedures shows that the spectrum of
the problem consists of two parts: the perturbed frequencies of the oscillators and the perturbed frequencies of the
beam without oscillators. The first group of frequencies is determined almost exactly. For example, the minimum
eigenvalue in the system with 14 oscillators is determined with an absolute error of 10−8. The amplitudes of the
oscillators calculated by the two procedures also coincide with high accuracy. The second group of frequencies is
calculated with an error O(h).

The calculations for the general case were performed for piecewise linear functions EF (x) and m(x) that
had a few tens of breaks and a few discontinuities. The results were compared with calculations using the shooting
method. In the cases where it was possible to calculate the eigenvalues using the shooting method, the results
coincided qualitatively with the results obtained for a homogeneous beam.

In particular calculations, the equations written above were rendered dimensionless. As the characteristic
mass and lengths, we used the mass of the beam without oscillators and the length of the beam, and as the
characteristic time, the quantity 1/Wmax, where Wmax is the characteristic frequency (the end of the computation
range). The calculations were performed both for a methodical purpose and for the purpose of studying the
occurrence of parametric resonance in the complex oscillating system.

Calculations were also performed for a beam with 14 oscillators. In one calculation, eight of them had
identical frequency λ0 and one (second) oscillator had a frequency close to λ0. The remaining oscillators had
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different frequencies. The distance between one pair of oscillators with frequency λ0 (the 5th and 6th oscillators)
was 3 · 10−3% of the length of the beam, and that between the other pair (the 12th and 13th oscillators) was 4.5%
of the beam length.

Four calculations were performed: 1) EF (x) ≡ 1 and m(x) ≡ 1; 2) EF (x) ≡ 1 and m(x) �= 1; 3) EF (x) �= 1
and m(x) �= 1; 4) EF (x) �= 1 and m(x) ≡ 1. In all calculations, the functions EF (x) and m(x) had identical form
(if they were not identically equal to unity), the same mesh was used, and the masses, frequencies, and arrangement
of the oscillators was unchanged.

It turned out that the oscillating system had a frequency close to but slightly smaller than λ0. For versions 1
and 2, the difference was 2.8 · 10−3%, and for versions 3 and 4, it was 1.3 · 10−3%. The 6th oscillator had the
maximum amplitude, and the amplitude of the 5th oscillator was approximately 60% of the amplitude of the 6th
oscillator. The remaining oscillators had the following amplitudes: 0.1% (1, 2, and 7th), 0.1 · 10−3% (3rd and 4th),
and 10−5–10−13% (8–14th) of the amplitude of the 6th oscillator. The points of suspensions of the oscillators had
amplitudes not larger than 0.01% of the amplitude of the 6th oscillator.

Thus, all oscillators, except for the 5th and 6th, are almost stationary, the moving oscillators (the 5th and
6th) oscillate in antiphase (their amplitudes have opposite signs), and the following approximate equality is satisfied:

amplitude of 6th oscillator
amplitude of 5th oscillator

= −mass of 5th oscillator
mass of 6th oscillator

.

From these equalities it follows that the forces acting on the beam at the attachment points of the 5th and 6th
oscillators are opposing and are almost equal in magnitude (in the calculation, the difference was 1.5%). Compared
to these forces, the forces exerted on the beam by the remaining oscillators amount to not more than 0.01%.

For version 1, a different calculation was performed. The distance between the points of suspension of the
thirteenth and twelfth oscillators was 2.6 · 10−3% of the beam length. In this case, the system has two frequencies
close to λ0 (both smaller than λ0). At one of these frequencies (which differs from λ0 by approximately 2.8 ·10−3%)
the 5th and 6th oscillators have the larger amplitude, and at the other (which differs from λ0 by approximately
4.1·10−4%), the larger amplitude is observed for the 12th and 13th oscillators. The oscillation pattern is qualitatively
similar to that described above but is more pronounced.

For version 3, a calculation was performed with a changed frequency of the 2nd oscillator (the frequency was
increased by a factor of 100). The frequency of the system close to λ0 remained almost unchanged. The amplitudes
of the oscillators (for oscillation of the system with a frequency close to λ0) increased (except for the amplitudes of
the 5th and 6th oscillators) but the pattern is qualitatively similar to that described above.

In the last calculation for version 3, the 6th and 5th oscillators were separated by a distance equal to 1% of
the beam length. The effect described above disappeared, and the frequency of the oscillating system the nearest
to λ0 was 6% of the value of λ0. The calculation results for the version with 14 oscillators are given in [2].

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00250).
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